

Top Physics at the LHC

Simona Rolli Tufts University

The Top Quark in the Standard Model

Discovered in 1995 at the TeVatron, flurry of measurements
We still don't know all about it

- Mass Precision <2%

- Top width ∼1.5 GeV

- Electric charge 3/3 -4/3 excluded @ 94% C.L. (preliminary)

- Spin ½

Not really tested – spin correlations

- BR(t→Wb) ~ 100%

At 20% level in 3 generations case

FCNC: probed at the 10% level

Production mechanisms Single Top: not yet observed

The LHC offers opportunity for further testing and **precision measurements**

Talk Outlook

- Strong pair production
 - Standard top physics
 - Early top physics
- Top Properties
 - Mass, Charge, W polarization, top polarization
- Electroweak single top production
 - Analysis strategies
 - Vtb measurements
- Using top for calibration purposes
 - Jet energy corrections, b-jets, missing energy
- A window to new physics
- Conclusions

Most of the results presented are based on ATLAS studies

Strong Pair production at the LHC

LHC is a top factory —

Seeing top is easy

Selection: High P_⊤ Lepton Large Missing E_⊤ 4 high-P_⊤ jets (2 b-jets)

- → signal efficiency few %
- → very small SM background
- Standard' Top physics at the LHC:
 - b-tag is important in selection
- Most measurements limited by systematic uncertainties
- 'Early' top physics at the LHC:
 - Cross-section measurement (~ 20%)
 - Decay properties

Top quark physics without b-tag (early phase)

Top Properties: Mass

Lepton+jets

- isolated lepton (e, μ): p_T >20GeV/c, $|\eta|$ <2.5
- missing E_T>20GeV
- at least 4 jets: p_T >20GeV/c (corrected), $|\eta|$ <2.5
 - at least 2 light jets to reconstruct hadronic W
 - 2 b-tagged jets to select the bjj system with highest P_T
- very effective in background rejection (S/B=10⁻⁴→30)
 - mainly from bb, W/Z+jets and Wbb

full simulation, $L=10 \text{fb}^{-1}$ $\delta M_{\text{t}}(\text{stat})=0.05 \text{GeV}/c^2$ $\delta M_{\text{t}}(\text{sys})=1.3 \text{GeV}/c^2$

Dileptons:

- two opposite-signed leptons: $p_T(\text{lepton}) > 20 \text{GeV/}c$, $|\eta| < 2.5$
- missing E_T>40GeV
- 2 b-jets: p_T >25GeV/c (corrected), $|\eta|$ <2.5
- Final state reconstruction
- 6 unknowns (neutrinos' momenta), M_t hypothesis
 - conservation of transverse momentum
 - mass-constrain each l

 v pair to M_w
 - mass-constrain each l-v-b-jet system to M₁
- weight assigned to each solution
 - based on comparison with MC
 - average w eight over w hole event sample
- M₁ from solution with highest mean weight

fast simulation $L=10 {\rm fb^{-1}}$ $\delta M_{\rm t}({\rm stat})=0.04 {\rm GeV}/c^2$ $\delta M_{\rm t}({\rm sys})=1.7 {\rm GeV}/c^2$

Top Properties: W Polarization

Top decays before hadronization

- spin information passed directly onto Wb
- SM predicts 70% longitudinal W and 30% left-handed W
 - depending on M_t and M_W only

$$f_0 = rac{m_t^2}{2m_W^2 + m_t^2}$$

- parametrize in terms of angle between
 - direction of W in top rest frame
 - direction of lepton in W rest frame

- Precision in measurements of the fractions F₀(longitudinal) and F_R
- Unfold selection and detector effects

fast simulation <i>L</i> =10fb ⁻¹		F ₀	F_R
Stat	CMS (SL)	±0.023	±0.015
Siai	ATLAS (SL+DL)	±0.004	±0.003
C) re	CMS (SL)	±0.022	±0.053
Sys	ATLAS (SL+DL)	±0.016	±0.012

Top Properties: Charge

- Aimed at confirming $Q_t=2/3$ SM hypothesis
 - non standard value Q_t=-4/3 not yet excluded
 - can arise from wrong W-b association
- Two procedures for direct measurement
 - Top e.m. coupling through photon radiation in tt events
 - gg initial state dominance at LHC reduces ISR
 - radiative tt production & (interfering) decay: x-section
 - radiative tt decay: reduced by requiring high M(bjjγ) or M_T(lvbγ)

reconstruct charge of decay products

(lepton/dilepton+jets)

- easy for W boson (Q_I)
- challenging for b-jets

$$Q_{jet} = \frac{\sum_{i} Q_{i} \left| \overline{p}_{jet} \cdot \overrightarrow{p}_{i} \right|^{2}}{\sum_{i} \left| \overline{p}_{jet} \cdot \overrightarrow{p}_{i} \right|^{2}}$$

- I-b association: M_{Ib} < M_t
- Systematics underway

Single Top at LHC

All 3 contributing mechanisms in SM:

Decay modes:

- $W^*: W^* \rightarrow t \text{ bbar} \rightarrow (I^+Vb) \text{ bbar}$
- o Wg: q'g → t q bbar → (I^+Vb) q bbar
- W+t: bg → t W → (I+Vb) qq'

1 leptons + MET + ≥ 2 jets + 1(2) b-tags

- Computation at NLO available for W* and W-g :
 - Increase of σ(W*) by ~30 %
 - Affect p_T(jet) distribution, H_T etc...

Channel	σx BR(pb)		
W-g	54.2		
W+t	17.8		
W*	2.2		
ttbar	246		
Wbb	66.7		
W+jets	3,850		

Common selection for all 3 single-top samples :

- 1 High pT Lepton + mET
- → reduce non-W events
- At least two high-p_T jets
- → reduce W+jets events

- o ttbar ~ 38%
- WQQ ~ 1.5% , W+njets < 1/1000

Why Single Top?

Motivations

- Properties of the Wtb vertex :
 - Determination of $\sigma(pp \rightarrow tX)$, $\Gamma(t \rightarrow Wb)$
 - Direct determination of |V_{tb}|
 - Top polarization

Precision measurements → probe to new physics

Anomalous couplings

- FCNC
- Extra gauge-bosons W' (GUT, KK)
- Extra Higgs boson (2HDM)

- Single-top is one of the main background to ...
 - ... Higgs physics...

M(top) = c	175 GeV/c²	s-channel	t-channel	Associated tW	Combined (s+t)
TeVatro	n σ _{NLO}	0.88 ± 0.11 pb	1.98 ± 0.25 pb	0.1 pb	
LHC σ_{NL}	0	10.6 ± 1.1 pb	247 ± 25 pb	62 ⁺¹⁷ ₋₄ pb	
Run II	CDF	<3.2 pb	< 3.1pb	NA	< 3.5
95% CL	D0	< 5 pb	< 4.4 pb	NA	NA

 σ_{t+s} = 2.9 pb for m(top) = 175 GeV/c²

B.W. Harris et al.:Phys.Rev.D66,054024

T.Tait: Phys.Rev.D61,034001

Z.Sullivan Phys.Rev.D70:114012

A.Belyaev, E.Boos: Phys.Rev.D63,034012

ATLAS analysis strategies

In the late '90 several studies were conducted to produce a physics TDR. Current studies are meant to devise analysis strategies for early data taking and the full statistics, using the latest software tools.

Description of cuts	С	umulative Select	ion Efficiency (%	6)
	W-g fusion	tt	Wbb	Wjj
Pre-selection cuts	20.0	44.4	2.49	0.667
Njets = 2; $p_T > 30 \text{GeV}$	13.2	0.95	0.99	0.37
Forward jet; $p_T > 50, 1 \eta 1 > 2.5$	4.3	0.046	0.072	0.06
m_{tot} >300 GeV	3.58	0.025	0.043	0.048
$H_{\rm T} > 200~{\rm GeV}$	2.08	0.019	0.036	0.027
$150 < m_t < 200 \text{ veto}$	1.64	0.01	0.0052	0.0066
Events/30 fb-1	26 800 ± 1000	720 ± 160	104 ± 60	7900 ± 1600

Description of cuts	Cumulative Selection Efficiency (%)					
	Wt	tŧ	WbŪ			
Pre-selection cuts	25.5	44.4	2.49			
njets = 3; $p_T > 50 \text{ GeV}$	3.41	4.40	0.05			
nb-jet = 1	3.32	3.24	0.037			
m_{tot} < 300 GeV	1.43	0.71	0.008			
$65 < m_{jj} < 95 \text{ GeV}$	1.27	0.41	0.003			
Events/30 fb-1	6828 ± 269	30408 ± 742	58 ± 19			

Description of cuts	Cumulative Selection Efficiency (%)							
	W*	W-g fusion	Wt	tŧ	Wbb	Wjj		
Pre-selection cuts	27.0	20.0	25.5	44.4	2.49	0.667		
njets = 2; $p_T > 30 \text{ GeV}$	15.7	6.8	3.79	0.93	1.35	0.201		
nb -jet = 2; $p_T > 75 \text{ GeV}$	2.10	0.05	0.018	0.023	0.038	0.0005		
scalar sum of $p_T > 175$ GeV	1.92	0.036	0.016	0.021	0.030	0.0004		
m_{tot} >200GeV	1.92	0.036	0.014	0.021	0.025	0.0003		
150 <m<sub>lvb<200 GeV</m<sub>	1.67	0.031	0.008	0.017	0.016	0.0002		
Events/30 fb-1	1106 ± 40	510 ± 148	42 ± 21	1290 ± 228	328 ± 61	226 ± 113		

Wg channel

Selection criteria

- Number of jets : N(jet) = 2
- Presence of a high-p_T b-tagged jets (p_T>40GeV/c)
 Wg evts have 1 b-jet escaping the acceptance
 - → requires **only** 1 b-tagged jet
- Presence of a high-p_T forward jet
 → 1 jet with |η|>2.5 and p_T≥ 50GeV/c
- Reconstruct M_{Ivb} within ±25 GeV/c²
- Window in H_T

	W*	Wg	W+t	tt	WQQ	W+jets
Pre-Selection (%)	26.2	23.7	22.4	38.3	1.46	0.05
Selection ε(%)	0.22	0.44	0.023	0.007	0.006	0.0013
Nevent(30 fb ⁻¹) ± MC stat.	150 ± 6	7,080 ± 160	125 ± 13	500 ± 150	130 ±40	1,500 ± 750

- o N(jet) = 2
- → reduces tt by ~6 vs Wg
- o 1 high-p_T fwd jet \rightarrow reduce tt (by ~5), Wt(~10), Wjj(~2)
- Great uncertainty on WQQ / W+jets backgrounds

s-channel

Selection criteria

- Number of jets : N(jet) = 2
- Presence of two high p_T jets
- Presence of two central, high-p_T b-tagged jets
 - → Wa usually have 1 b-iet escaping the acceptance
- Reconstruct M_{Ivb} within m_{top} ± 25 GeV/c²
- Window in H_T

	VV*	Wg	W+t	tt	WQQ	W+jets
Pre-Selection ε(%)	26.2	23.7	22.4	38.3	1.46	0.05
Selection ε(%)	1.73	0.105	0.002	0.035	0.059	0.0001
Nevent(30 fb ⁻¹) ± MC stat.	1,141 ± 7	1,680 ± 48	10 ± 3	2,580 ± 150	1,148 ± 38	170 ± 85

- N(jet) = 2 → reduces tt by a factor ~ 20 vs W*
- 2 high-p_T b-jets → reduces WQQ by ~2 and Wg by ~8
- M_{lvb} and H_T → reduce non-top by ~2

Wt channel

- Number of high-p_T jets Njet) = 3
- Presence of a high-p_T b-tagged jets
 → Only **one** b-jet in W+t events
- Presence of a W-boson mass peak
 → requires 60 < M(j,j) < 90 GeV/c²

Window in H_⊤ or Invariant Mass

- o N(jet) = 3 → reduces Wjj & WQQ ~3.5 wrt W+t
- o M(jj) ~ M_W → reduces WQQ/jets by ~3 wrt W+t
- → Good knowledge of tt background is mandatory

V_{tb} Measurement

Indirect measurement

based on CKM unitarity constraint (3 generations)

$$\frac{\left|V_{tb}\right|^{2}}{\left|V_{td}\right|^{2}+\left|V_{ts}\right|^{2}+\left|V_{tb}\right|^{2}}=\frac{BR(t\to Wb)}{BR(t\to Wq)}$$

Direct measurement

- based on electroweak single top production $(\sigma \propto |V_{tb}|^2)$
 - measure yield of single top production
 - combine with BR(t→Wb) and M_t (from tt channel)
- unbiased test of 3-generation structure of SM
- penalized by poor knowledge of W+jets, WQQ background
- no systematic effects taken into account

channel	S/B	uncertain	A.V. /\V	
	3/6	stat (30fb ⁻¹)	theoretical	$\Delta V_{\mathrm{tb}}/V_{\mathrm{tb}}$
s-channel	0.55	5.6%	7.5%	4.7%
t-channel	2.3	0.54%	11%	5.5%

Top quark pair production as calibration tool

Leptons and trigger

Note candles: 2 W-bosons 2 top quarks

Calibrating jet energy scale

One of the most relevant systematic effects on M_t

- jet energy: measurement of parton energy
- 1% uncertainty on absolute JES induces δM_t~1GeV/c²
- sizeable effects also from
 - b-jet energy scale
 - QCD radiation, underlying event, cone algorithm
- at start-up, 5÷10% uncertainty
 - test-beam data
- in-situ correction with Z/γ+jet
 - p_T(jet) correction
 - residual mass shift (2% on M_t)
- $M_{jj}=M_W$ additional constraint on JES
- clean W→jj sample needed
 - 80% purity within tt→lv+jets

- goal: 2÷3% uncertainty in 1 year (target 1%)
- Alternative method: P_T balance in Z/γ + jet events

full simulation tt MC@NLO

Calibrating b-jets

- b-tagging techniques rely on
 - impact parameter of decay tracks
 - primary/secondary vertex separation
 - soft leptons
 - targeting b and c semileptonic decays
- Typical performances
 - efficiency ~60% on p_T>40GeV/c jets
 - light flavour rejection 1/ε_u~200
- Jets from b-quarks need specific corrections
 - semileptonic decays of heavy-flavoured quark
 - neutrino induces a large shift on the jet energy
 - effect enhanced if lepton is muon (MIP)
 - jet direction affected as well as jet energy

Calibrating the missing energy

- P_{μ} (neutrino) constrained from kinematics: M_W \rightarrow known amount of missing energy per event
- Calibration of missing energy **vital** for **all** (R-parity conserving) SUSY and most exotics!

Range: $50 < P_T < 200 \text{ GeV}$

A window to new physics?

Conclusions

- 1) Top quarks are produced by the millions at the LHC:
 - → Almost no background: to measure top quark properties will be easy
- 2) Top quarks are THE calibration signal for complex topologies:
 - → Most complex SM candle at the LHC
 - → Vital input for detector commissioning/calibration
- 3) Top quarks pair-like and singly produced..... as a window to new physics:
 - → FCNC, SUSY, MSSM Higgs, Resonances, anomalous couplings Also important SUSY background

Backup Slides

Top Mass Now

Top Cross Section Now

Top Properties Now

	Top quark pr	oduction and decay properties	
lepton+jets	Search for resonances in ttbar mass spectrum	95% C.L. on $\sigma \times BR(X->ttbar)$	680
lepton+jets	Search for a Massive Fourth Generation t' Quark t' mass > 258 GeV at 95% CL		760
lepton+jets	Top Quark Lifetime	cτ _{top} < 52.5 μm @ 95% C.L.	318
dilepton	Search for Anomalous Kinematics	1.0-4.5%	194
lepton+tau	<u>t->τ να</u>	5 obs vs 2.7+-0.4 bkg p-value 15%, or 1sigma excess	350
dilepton, lepton+jets, single and double Vertex b-tags	BR(t->Wb)/BR(t->Wq)	1.12 + 0.21 - 0.19 (stat) + 0.17 -0.13 (syst) > 0.61 @ 95% C.L.	162
dilepton, lepton+tau, lepton+jets single and double Vertex b-tags	Search for Charged Higgs in top decays	Limits on BR(t->H+b)	194,162
lepton+jets	Top Production Mechanism	0.25+-0.24(stat)+-0.10(syst) for xs(gg->ttbar)/xs(ppbar->ttbar)	330

W helicity Now

W Helicity Plain English explanation						
lepton+jets	<u>cosθ *</u>	F_0 = 0.61 +-0.12(stat) +-0.04 (syst) F_+ < 0.11 @ 95% C.L.	955			
dilepton, lepton+jets (Run II)	<u>M_{lb}²</u>	F ₊ < 0.09 @ 95% C.L.	750			
lepton+jets	<u>cosθ *</u>	F ₀ = 0.59 +-0.12(stat) +0.07-0.06(syst) F ₊ < 0.10 @ 95% C.L.	955			
lepton+jets	Combined cosθ * and Lepton Pt spectrum	F ₀ = 0.74 +0.22 -0.34 (stat+syst) F ₊ < 0.27 @ 95% C.L.	162			
dilepton, lepton+jets Run I	<u>M_{lb}²</u>	F ₊ <0.18 @ 95% C.L.	109			